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ABSTRACT  
Image processing techniques are used to detect the edges of a hand-drawn sketch. Generally, various 
types of gradation are expressed in the background of a hand-drawn sketch.    Therefore, the original 
image is transformed into a logarithmic image.  The entire image has to be binarized for edge 
detection.  To smooth the edge of the binary image, feature based erosion and dilation is applied.  The 
Laplacian operation is applied to the binary image to detect the edge in the binary image.  This edge 
position corresponds to the position of the line in the hand-drawn sketch image.  Line segments which 
represent the detected edges are generated.  Using line segments, a NURBS curve is generated.  Using 
the position and gradient on the line segments, a NURBS curve is generated.  The shape of a NURBS 
curve extracted from the sketch image is examined by the designer visually.  The shape of this 
NURBS curve generally coincides with the intention of the designer, but does not coincide precisely.  
Therefore, a curve shape modification method based on the specified radius of curvature is applied.  
The sum of the squared differences between the radius of curvature of a curve and the specified radius 
of curvature of an entire curve is linearized by Taylor’s theorem, then minimized.   

Keywords: Hand-drawn sketch, image processing, regression line, NURBS curve, curvature, radius of 
curvature, curve shape modification 

1 INTRODUCTION 
Conventional design procedures can easily produce simple shapes. However, currently, industrial 
designers are drawn to aesthetically pleasing freeform shapes because they have great customer appeal, 
especially in a highly competitive and technically well-developed market, such as that for automobiles 
and electrical appliances.  It takes a long time to design aesthetically pleasing products using 
conventional procedures. 
A solution to this problem is to establish a method to shorten the product design period, especially the 
period from the first idea generation as it is narrowed down to the final design.  Therefore, the 
objective of developing this method is to shorten the product design period. 
When designers begin a product design, designers create their ideas and expand them.  Normally this 
process is performed on paper, and designers’ hand-drawn lines are called sketches.  If the designers’ 
rough idea on the sketch can be realized as a real curve, it will be effective in shortening the design 
period.  As a drawing technique, there are two canons.  One is perspective projection.  The other is 
orthogonal projection.  Generally, it is not easy to estimate the perspective transformation matrix from 
a sketch drawn by perspective projection.  Therefore, the sketch in this study is limited to orthogonal 
projections such as front view, side view and top view.   
First, hand-drawn sketches are put into a computer by using a scanner.  Then, image processing 
techniques such as light intensity transformation, edge detection of a hand-drawn sketch, and feature 
based erosion and dilation to smooth the edge of the binary sketch image are examined.   
In addition to these image processing techniques, principal component analysis is introduced to 
generate regression line segments using the detected edges.  Using the line segments determined, a 
quintic NURBS curve is generated.  A NURBS curve, which is commonly used in the area of CAD･
CAM and Computer Graphics, is used as an expression of a freeform curve.  A quadratic NURBS 
curve is used as an expression of a quadratic curve using its weights.  In this study, a quadratic curve is 
not used to express the shape of a curve.  Therefore, the weights of the NURBS curve are not used.  A 
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cubic NURBS curve is widely used also, but in this study, radius of curvature over the multi segments 
of the NURBS curve is modified based on the specified radius of curvature.  So, a smooth radius of 
curvature continuity is needed.  Therefore, a quintic NURBS curve is used in this study. 
The position of the midpoints and the gradient of the line segments are given to the NURBS curve 
equation and first derivative equation of the NURBS curve respectively.  Then, a NURBS curve is 
generated.  Afterwards, if necessary, the shape of this NURBS curve is modified according to the 
specified radius of curvature distribution. 
There are many related works for generating curves based on a sketch.  Curve generation by tracing a 
hand-drawn sketch is available as a function of a commercial computer aided aesthetic design system 
[1].  Curve generation using a sketch, design language and characteristic lines [2], curve generation 
based on a hand-drawn sketch [3], curves for a character such as a stuffed animal design based on a 
hand-drawn sketch [4], 3D shape reconstruction using hand-drawn lines [5], and simple polygonal 
shape reconstruction based on a hand-drawn sketch [6] have been published.  Curve generation using a 
hand-drawn sketch and it’s view points [7], remeshing based mesh smoothing by a sketch [8], shape 
generation using a volumetric modeling technique [9], and shape generation using 3D scenes [10] 
have also been published. 
In addition to these, mechanical parts such as a piston using a hand-drawn sketch [11], simple parts 
generated by constructed solid geometry [12], and simple mechanical parts design using digital clay 
[13] have been published.  There are many related works for generating fair curves.  Fair curve 
generation algorithms related to energy functions have been published.  These find the unfair portion 
of a curve using energy function [14], and apply a low-pass filter to energy function [15].  Fair curve 
generation algorithms related to curvature control have been published.  These make monotone 
curvature [16], use a clothoidal curve for specifying the curvature [17], and modify the curve based on 
the specified curvature [18].  In addition to these, fair curve generation by using the second derivative 
values [19], using an argument of Bézier control edges [20], minimizing positional, the first, the 
second, and the third derivative values [21] have been published. 
Section 2 of this paper describes the techniques for image processing such as light intensity 
transformation, binarization of the sketch image, and feature based erosion and dilation to smooth the 
edge of the binary image.  Section 3 describes the line segment generation based on the detected edges 
by introducing the principal component analysis.  Section 4 of this paper describes NURBS curve 
expression and NURBS curve shape modification based on the specified radius of curvature.  Section 
5 describes NURBS curve generation using the line segments.  In section 6, examples of NURBS 
curve generation based on a hand-drawn sketch according to the generation process are given. 
 

2 IMAGE PROCESSING 
In this section, the image processing techniques used to detect the edges of a hand-drawn sketch are 
described.  First, light intensity transformation to overcome the gradation given by the designer, 
binarization, feature based erosion and dilation to smooth the edge of the binary image, and edge 
detection are described. 

2.1 Light intensity transformation 
Generally, various types of gradation are expressed in the background of a hand-drawn sketch [22] as 
shown in Figure 1.  In such cases, the human eye is able to recognize lines which are drawn in a dark 
area as well as lines which are drawn in a bright area.  However, a computer can not recognize lines in 
a dark area, because of the small difference in light intensity between the lines and the background 
gradation, which is dark.  Therefore, we have developed a method to extract lines which are drawn in 
a relatively dark area.  The original image is transformed into a logarithmic image using Eq.(1). 
 logy a x= ,                                           
where a  is a factor, which is determined interactively by the designer.  The logarithmic image is 
shown in Figure 2.  In the logarithmic image, the light intensity difference of adjacent image elements 
in the dark area become very close to the differences in the bright area.  In other words, the light 
intensity of the dark area of the original image is amplified, while that of the bright area of the original 
image is reduced.   
 
 

(1) 
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Figure 1. Hand-drawn sketch image                                    Figure 2. Logarithmic image 

2.2 Binarization of sketch image 
A histogram is a graph which shows the frequency of the gray level.  When the image signal is analog, 
this histogram becomes a curve, but when digital, the histogram becomes a bar graph.  In case the 
histogram has two peaks (ridges), the valley part can be a threshold.  But two peaks suggest the 
possibility of two more edges being in existence.  In other words, there may exist edges in the 
relatively dark area and in the relatively bright area.  If the valley part shown in Figure 3 is decided as 
a threshold, we will lose the opportunity to extract the edges in the relatively dark area and in the 
relatively bright area.  In general, designers use various types of gradation in their sketches, so there 
might be many peaks in the histogram.  Therefore, the threshold determination can be performed 
interactively.  Binarization should be performed according to the threshold temporarily decided.  Then, 
the candidate points for edges are displayed.  This determination process should be done interactively 
by the designers. 
 
 
 
 
 
 
 
 
 
Figure 3. Histogram of hand-drawn sketch image         Figure 4. Binarized hand-drawn sketch image 
 
A single threshold is not enough in some cases to binarize an entire image.  Therefore, the entire 
image is divided into multi regions, and thresholds for each region are established independently.  In 
this case, the entire image is divided into 64 regions.  The 64 thresholds for each region are determined 
and the entire image is then binarized.   

2.3 Feature based erosion and dilation to smooth the edge of the binary image 
“Erosion and dilation” is a well-known method to correct defects in a binary image.  They are applied 
to the binary image as a combination of erosion-dilation or dilation-erosion.  Erosion removes 
granules, and isolated lines and points, dilation fills holes and gaps in the binary image.  The sample 
image shown in Figure 5(a) has been created to show the performance difference between “pixel based 
erosion and dilation” and “feature based erosion and dilation” [23, 24].   
 
 
 
 
 
 
 
             (a) sample image     (b) pixel based erosion and dilation  (c) feature based erosion and dilation 
                                                              applied 10 times                                 applied 10 times 

Figure 5. Comparison of pixel based erosion and dilation, and feature based erosion and dilation 
 
Pixel based erosion and dilation is applied 10 times to the image.  The result is shown in Figure 5(b).  
Although salt-and-pepper noise [25] is reduced, the image shape becomes very different from the 
image shown in Figure 5(a).  This shows that pixel based erosion and dilation is not effective to 
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smooth the edge of the image.  To improve this performance, feature based erosion and dilation is 
examined.  "Feature based erosion and dilation" is used for the purpose of smoothing the edge of the 
binary image.  The binary image is traditionally set to one for black, and to zero for white.  The sum of 
the pixel values of the 8 neighborhoods of the central pixel is called the neighborhood coefficient [23].  
It is used to determine the central pixel value, which is zero or one.  A neighborhood coefficient varies 
from zero to eight.  It is known by our experiments that a neighborhood coefficient of over 5 does not 
work.  In addition to this, in case the neighborhood coefficient is zero, this process is exactly the same 
as "pixel based erosion and dilation".  Therefore, a neighborhood coefficient is determined 
interactively using the value from one to four, according to the visual inspection of the binary image. 
For the erosion process, if the sum of the neighborhoods is bigger than the neighborhood coefficient, 
the central pixel value is set to zero, and if the sum of the neighborhoods is smaller than the 
neighborhood coefficient, the central pixel value is set to one. 
For the dilation process, if the sum of the neighborhoods is bigger than the neighborhood coefficient, 
the central pixel value is set to one, and if the sum of the neighborhood is smaller than the 
neighborhood coefficient, the central pixel value is set to zero. 
As mentioned above, for the process of erosion and dilation, a method to decide the central pixel value, 
according to the sum of 8 neighborhoods based on the neighborhood coefficients is called "feature 
based erosion and dilation" [23] in this paper. 
Feature based erosion and dilation is applied to the image 10 times.  The result is shown in Figure 5(c).  
It can be seen that while keeping the original shape, the salt-and-pepper noise is reduced. 

2.4 Edge detection 
The first derivative for a digital image is performed by difference.  A Laplacian in the area of image 
processing is the second derivatives, so a Laplacian operation is performed by the difference of the 
first derivative.  Therefore, a Laplacian operator is expressed by the difference of the difference.  As a 
Laplacian operator, there exist 3×3, 5×5, 7×7, 13×13 and so on.  Our purpose of using a Laplacian 
operator is to detect the edge of the binary image.  For this reason, a Laplacian operator is decided as 
3×3 which is 8 neighborhoods.  If a Laplacian operator is applied to the binary image, the Laplacian 
image has a positive and negative value, between these two values, the Laplacian value becomes zero.  
This is called zero crossing.  The position for zero crossing is detected as the edge of the binary image. 
Assuming ( , )f i j  is the pixel value of position ,i j  of binary image, 8 neighborhoods are expressed 
as shown in Figure 6.  Since the Laplacian operator is the second derivative, which is defined by the 
difference of the difference, the operator is expressed as shown in Figure 7. 
 

( 1, 1)f i j- -  ( 1, )f i j-  ( 1, 1)f i j- +  

( , 1)f i j -  ( , )f i j  ( , 1)f i j +  

( 1, 1)f i j+ -  ( 1, )f i j+  ( 1, 1)f i j+ +  

      Figure 6. Pixel value of 8 neighborhoods          Figure 7. Laplacian operator for 8 neighborhoods 
                       
The pixel value ( , )g i j  of the Laplacian image corresponding to ( , )f i j  of the binary image is 
expressed by Eq.(2) using Figure 6 and Figure 7. 
 ( , ) ( 1, 1) ( 1, ) ( 1, 1) ( , 1)g i j f i j f i j f i j f i j= - - + - + - + + - 　 

               ( , 1) ( 1, 1) ( 1, ) ( 1, 1) 8 ( , )f i j f i j f i j f i j f i j+ + + + - + + + + + -  

Figure 8(a) shows the binary image and detected edges.  An example of detected edges is shown in 
Figure 8(b).  This shows that the idea described in this section is effective.             
 
 
 
 
                   (a) binary image and detected edges              (b) detected edges  
                                    Figure 8. An example of edge detection 
 

1 1 1 

1 -8 1 

1 1 1 

(2) 
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3 LINE SEGMENT GENERATION USING THE DETECTED EDGES 
A method to determine the regression line for the detected edges is described by showing examples.  
When the 160 detected edges are located as shown in Figure 9(a), a regression line is generated by 
using the principal component analysis, the generated regression line becomes a heavily delineated 
line as shown in Figure 9(b).  This straight line can not be considered as representative of the edge 
data.  On the other hand, if lines are drawn that roughly follow the detected edge data points, an image 
emerges as shown in Figure 9(c). 
 
 
 
 
 
 
 
   (a) detected edge data points    (b) one line segment representing (c) 8 line segments representing 
                  (160 points)                                 detected edges                                 detected edges 

Figure 9. Detected edge data and their representative lines 
 
For the principal component analysis, we have to place the data points into the desirable number of 
groups containing the desirable number of data points.  But we have no rule for grouping.  Therefore, 
although the principal component analysis is not the statistical analysis, we follow the principle of 
Sturges rule [26].  The data points are then placed into 8 groups of 20 points each in this case.  The 
principal component analysis is then applied to each group.  A regression line segment representing 
the edge data for each group is then obtained.   
In this manner, number of groups and number of detected edge data in all groups are determined by 
following the principle of Sturges rule.  Then, regression line segments for all groups are generated 
using the detected edges from the hand-drawn sketch. 
 

4 NURBS CURVE EXPRESSION AND MODIFICATION BASED ON THE 
SPECIFIED RADIUS OF CURVATURE 
A quintic NURBS curve consists of 5n -  segments ( 6)n ³  is composed of n  control points such as 

, , ,0 1 n-1q q q and n  weights such as 0 1 1, , , nw w w -  in Eq.(3). 
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where ( ) ( ),6 0,1, , 1iN t i n= -  are NURBS basis functions. 
     These functions are recursively defined by knot sequence 0 1 5, , , nt t t +  as in Eq.(4). 
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where 0,1, , 1i n= -  and M = 2,3, ,6 . 
The basis functions are defined by the de Boor-Cox [27] recursion formulas.  If the knot vector 
contains a sufficient number of repeated knot values, then a division of the form ( ) ( ), 1 1/i M i M iN t t t- + - -  

0/ 0=  (for some i ) may be encountered during the execution of the recursion.  Whenever this occurs, 
it is assumed that 0/0 = 0 [28]. 
A quintic NURBS curve with knot vector { }5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6- - - - -  is expressed as in Eq.(5). 

 
( ) ( ){

}

5 5 4 3 2 5 4 2
0 1 2

5 4 3 2 5 4 3 2 5
3 4 5

1 1 (5 20 20 20 50 26) ( 10 30 60 66)
120
(10 20 20 20 50 26) ( 5 5 10 10 5 1)

t t t t t t t t t t

t t t t t t t t t t t

= - + - + + - + + - + - +

+ - - + + + + - + + + + + +

R q q q

q q q
           

The first derivative of a quintic NURBS curve is expressed as in Eq.(6). 

(3) 

(4) 

(5) 
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Curvature vector is expressed by Eq.(7). 
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( ) ( )( ) ( )
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t t t
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,                              

where ( )tR  is the first derivative of a NURBS curve, and ( )tR  is the second derivative of a NURBS 
curve.  Curvature is the magnitude of the curvature vector, therefore curvature is expressed as in 
Eq.(8). 
 ( ) ( )t tk = κ                                             
       
By definition, the curvature of a plane curve is non-negative.  However, in many cases it is useful to 
ascribe a sign to the curve [29].  The choosing of the sign is commonly connected with the tangent 
rotation (in moving along the curve in the direction of the increasing parameter): The curvature of the 
curve is positive when its tangent rotates counter-clockwise, the curvature of the curve is negative 
when its tangent rotates clockwise. 
Radius of curvature is the reciprocal number of curvature, therefore, radius of curvature is expressed 
as in Eq.(9). 
 ( ) ( )

1t
t

r =
κ

   

If the radius of curvature to the perimeter is linear, curvature distribution will be parabolic.  On the 
contrary, if the curvature to the perimeter is linear, radius of curvature distribution will be parabolic. 
Radius of curvature is suitable, because it corresponds to our visual recognition of the shape of the 
curve.  In a case where curve shape is very close to a straight line, the radius of curvature becomes 
infinity. And also, at the point of inflexion, curvature value becomes zero.  Therefore, the radius of 
curvature value becomes infinite.  For these reasons, the radius of curvature value is converted to 
curvature value for computation. 
The concept of radius of curvature specification and NURBS curve shape modification based on the 
specified radius of curvature is shown in Figure 10.  A NURBS curve and its radius of curvature plots 
are shown in Figure 10(a).  The modification of the shape of the NURBS curve shown in Figure 10(a) 
to that shown in Figure 10(b) is examined. 
The radius of curvature plots shown in Figure 10(a) are drawn perpendicular to the curve using 
straight lines.  The length of the line is proportional to the radius of curvature at that spot on the curve.  
However, the straight lines are not parallel to each other and the beginning points of the individual 
straight lines are different.  So, the curve with radius of curvature display is suitable to examine the 
variation of radius of curvature as a whole.  However, it is not suitable to examine the length of the 
straight line and variation of radius of curvature visually. 
Therefore, considering the parameter of the NURBS curve is different from the perimeter of the curve, 
the perimeter of the NURBS curve is placed on the horizontal axis as a straight line, and the radius of 
curvature is placed on the vertical axis as shown in Figure 10(c).  Then, the radius of curvature 
distribution to the perimeter is drawn.  After this, the specified radius of curvature is superimposed on 
the current radius of curvature distribution.   
As an example, the linear algebraic function as a specified radius of curvature specification is shown 
in Figure 10(c).  Coefficients of this linear function are calculated by introducing the least-squares 
method using the current radius of curvature distribution.   
The i th of radius of curvature distribution of a perimetrically represented NURBS curve is denoted ir , 
the specified radius of curvature at the same spot is denoted ˆir , the difference id  is shown by Eq.(10), 
and is illustrated in Figure 10(c). 
 

1 2 1 2 ˆ( , , , , , )x x y y
i i n n iq q q qd r r- -= × × × × × × -      

where 0,1,2, , 1i m= ××× - , m  is the number of specified radius of curvature, and n  is the number of 
NURBS curve segments plus 5, which is the degree of the curve. 

(6) 

(7) 

(8) 

(10) 

(9) 



ICED’07/120  

1 2 1 2( , , , , , )x x y y
n nS q q q q- -× × × × × ×  which is the sum of the squared differences for all specified radius of 

curvatures in Eq.(11) should be minimized by introducing the least-squares method.  The radius of 
curvature expression is non-linear.  Therefore, by Taylor's theorem, Eq.(11) is linearized as in Eq.(12). 
 1 2

1 2 1 2 1 2 1 2
0

ˆ( , , , , , ) ( , , , , , )
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x x y y x x y y
n n i n n i
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S q q q q q q q qr r
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=
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x x y y x x y yi i i i
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To minimize Eq.(12) is achieved by equating to zero all the partial derivatives of  
1 1( , ,x xS q q+ D ××× 2

x
nq - +  

2 ,x
nq -D 1

yq 1 ,yq+D ,× × × 2
y
nq - + 2 )y

nq -D  with respect to x
rqD  

1 ,yq+D and y
rqD ( 1,r = 2, × × × , 2)n -  as in Eq.(13). 
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Using these simultaneous linear equations, x
rqD  and y

rqD  ( 1,2, , 2)r n= ××× -  are calculated.  Then, x
rq , y

rq  
are determined. 
A reverse computation technique is applied to solve this problem.  This kind of study on the radius of 
curvature, or the curvature to realize a fair curve is called a constrained non-linear minimization 
problem [30].  For computation, ir  and ˆir  are calculated based on the perimeter.  Then, the perimeter 
used is converted to the parameter to calculate the position of the control points of the NURBS curve.  
Next, a NURBS curve is generated.  The total length of the curve, which is the perimeter, is calculated 
and rescaled as 1.  Repeating these operations, the positions of the control points of the NURBS curve 
are determined while id ( 0,1, , 1)i m= ××× -  are minimized for the entire perimeter. 
Using the above mentioned method of a linear algebraic function to specify the radius of curvature 
shown in Figure 10(c), radius of curvature distribution is changed to the one shown in Figure 10(d), 
while modifying the shape of the curve.  The dotted line shown in Figure 10(d) is a linear algebraic 
function specifying the radius of curvature distribution shown in Figure 10(c).  It is visually 
recognized that the radius of curvature distribution of the shape modified curve shown in Figure 10(d) 
matches to the specified radius of curvature. 
 
 
 
 
 
 
 
 
 
        

(a)                                      (b)                                     (c)                                     (d) 
Figure 10. Concept of radius of curvature specification and NURBS curve shape modification based 
on the specified radius of curvature 
(a) : current NURBS curve and its radius of curvature plots 
(b) : shape modified NURBS curve and its radius of curvature plots 
(c) : difference between current radius of curvature and specified radius of curvature 
(d) : radius of curvature of shape modified NURBS curve 
       and specified radius of curvature (same as in (c)) 
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5 GENERATION OF A NURBS CURVE USING THE LINE SEGMENTS 
The concept of generation of a NURBS curve based on the regression line segments determined using 
the detected edges is illustrated in Figure 11. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Concept of generation of a NURBS curve which approximates the regression line segments 
 

× × ×0 1 4mP ,mP , ,mP are the midpoints of the corresponding regression line segments.  × × ×0 1 4d ,d , ,d are 
directional unit vectors of the corresponding line segments.  A NURBS curve which passes through 
the midpoints and has first derivatives which are proportional to the directional unit vectors is 
generated. Eq.(14) is applied to the midpoints of the line segments by setting the parameter of Eq.(5) 
to zero.   

 1 ( 26 66 26 )
120

= + + + +i i i+1 i+2 i+ 3 i+4R q q q q q   ( 0,1, , 1)i m= ××× -  

where m  is the number of line segments. 
Eq.(15) is applied to the directional unit vectors of the line segments by setting the parameter of Eq.(6) 
to zero while considering the magnitude of the first derivatives. 

 1 ( 10 10 )
24

d
dt

= - - + +i
i i+1 i+3 i+4

R q q q q   ( 0,1, , 1)i m= ××× -  

where m  is the number of line segments. 
A NURBS curve is generated by solving Eq.(14) and Eq.(15) simultaneously.  If the number of line 
segments is 4, the number of NURBS curve equations (Eq.(14)) is 4 and the number of first derivative 
equations (Eq.(15)) is 4.  As a linear system, the total number of equations is 8, whereas the total 
number of control points of a NURBS curve is 8.  Therefore, this linear system is determined.  That is, 
the rank of a coefficient matrix of a linear system is equal to the number of unknowns.  The solution to 
this linear system is exact. 
But, in case the number of line segments is 3, the number of equations (Eq.(14)) which pass through 
the midpoints is 3, and the number of equations of the first derivative (Eq.(15)) is 3.  In this case, as a 
linear system, the number of equations is 6, whereas the number of control points of the NURBS curve 
is 7.  That is, the number of equations is less than the number of unknowns.  Therefore, this linear 
system is underdetermined [31].   
For an underdetermined system, while setting auxiliary function, the linear system is solved under the 
constraint condition by selecting one solution from infinite number of exact solutions using the 
Lagrange's method of indeterminate multipliers. 
In case the number of line segments is 5, the number of equations (Eq.(14)) is 5, and the number of 
equations of the first derivative (Eq.(15)) is 5.  In this case, as a linear system, the number of equations 
is 10, whereas the number of control points of the NURBS curve is 9.  That is, the number of 
equations exceeds the number of unknowns.  Therefore, this linear system is overdetermined [32].  For 
an overdetermined system, the differences of right and left side of all the equations of the system are 
minimized.  The control points calculated are an approximation. 
For a system, where the number of line segments is more than 5, the linear system is overdetermined.  
For these systems, in accordance with the increment of the difference between the number of 
equations and the number of unknowns, the status of approximation solution becomes worse.  
The above mentioned are summarized in Table 1.  A determined linear system is shown by the cross 
hatching. 
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Table 1. Linear system condition 

(I) (II)  (III)  (IV)  
2 6 Underdetermined Exact 
3 7 Underdetermined Exact 
4 8 Determined Exact 
5 9 Overdetermined Approximation 
6 10 Overdetermined Approximation 
7 11 Overdetermined Approximation 
8 12 Overdetermined Approximation 

    (I)   Number of line segments   
    (II)  Number of control points of a NURBS curve 
    (III) System condition (Underdetermined or Overdetermined) 
    (IV) Solution status 
  
As an example, in case the number of line segments is 3, that is, m  in Eq.(14) and in Eq.(15) is 3, the 
NURBS curve generated as an underdetermined system is shown in Figure 12 with its first derivative, 
which is drawn outward perpendicular to the curve by the straight lines.  The length of the line is 
proportional to the first derivative.  This is an unusual way of displaying the first derivatives.  
Nevertheless, this helps visual recognition of the NURBS curve shape and its first derivative 
magnitude variation.  The solution to this linear system is exact. 
In case the number of line segments is 4, that is, m  in Eq.(14), and in Eq.(15) is 4, the NURBS curve 
generated as a determined system is shown with its first derivative vectors in Figure 13.  The solution 
to this linear system is exact. 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. NURBS curve  Figure 13. NURBS curve  Figure 14. NURBS curve 
and its first derivative vectors,  and its first derivative vectors,  and its first derivative vectors,    
in case of underdetermined       in case of determined                 in case of overdetermined 
 
Moreover, in case the number of line segments is 5, that is, m  in Eq.(14) and in Eq.(15) is 5, the 
NURBS curve generated as an overdetermined system is shown with its first derivative vectors in 
Figure 14.  The solution to this linear system is an approximation.  In this manner, a NURBS curve is 
generated based on the line segments.   
The shape of the curve indicated by the arrow in Figure 12 and that of the curve indicated by the arrow 
in Figure 13 are visually different.  This is caused by the difference of the magnitude of the first 
derivative given to Eq.(15).  At the same time, the shape around 2mp  in Figure 13 and 2mp  in Figure 
14 look visually different.  As mentioned above, the shape of the curve is different, the position which 
should be passed is different, and the direction of the first derivative is different.  These differences are 
acceptable for the purpose of our study which is extracting a NURBS curve using a hand-drawn sketch. 
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6 EXAMPLES OF NURBS CURVE 
GENERATION BASED ON A HAND-
DRAWN SKETCH 
Using the techniques mentioned in the previous 
sections, a NURBS curve generation process 
illustrated in Figure 15 is described according to the 
following steps. 
The hand-drawn sketch image shown in Figure 
15(a) is put into a computer by using a scanner set 
at 120 dots per inch.  A gradated background is 
shown in this hand-drawn sketch.  Therefore, 
transformation to a logarithmic image is necessary.  
The logarithmic image is shown in Figure 15(b). 
Then, the hand-drawn sketch is binarized.  The 
binary hand-drawn sketch image is shown in Figure 
15(c).  The edge of the binary sketch is smoothed 
by applying feature based erosion and dilation.  The 
objective of this process is to smooth the outer edge 
of the binary image.  Therefore, internal image 
contours are eliminated. 
The edge smoothed binary sketch image is shown in 
Figure 15(d).  Then applying the Laplacian 
operation, the edges of the smoothed binary sketch 
image are detected.  The detected edges indicated 
by dots are shown with the sketch image as shown 
in Figure 15(e).  Using the detected edges, 
regression line segments are determined. 
These line segments are shown in Figure 15(f).  
Using the determined line segments, a quintic 
NURBS curve is generated. 
The generated NURBS curve with radius of 
curvature plots is shown in Figure 15(g).   
Radius of curvature distribution and specified 
radius of curvature according to the designer's 
intention are shown in Figure 15(h).  The curve 
shape modification algorithm is then applied to this 
NURBS curve. 
A shape modified quintic NURBS curve is shown 
with its radius of curvature plots in Figure 15(i). 
Radius of curvature distribution of a shape modified 
NURBS curve is shown with the specified radius of 
curvature distribution in Figure 15(j). 
Thus, following these steps, a NURBS curve 
according to the designer's intention can be 
generated. 
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7 CONCLUSIONS 
The objective of this study is to shorten the product design period by extracting a freeform curve from 
a hand-drawn sketch.  Edge smoothing of the binary sketch image by feature based erosion and 
dilation, and line segment generation using the detected edges are described.  A freeform curve is 
expressed as a quintic NURBS curve, and NURBS curve generation based on the line segments are 
described.  Then, a method to modify a NURBS curve shape based on the specified radius of curvature 
distribution is described.  Examples of NURBS curve generation based on a hand-drawn sketch are 
given according to the generation steps. 
We have proposed an edge smoothing method of the binary image by feature based erosion and 
dilation.  We have also proposed a method to generate a NURBS curve using the given points and the 
gradient on the line segments simultaneously. 
Moreover, we have also proposed a method to modify the shape of the NURBS curve according to the 
specified radius of curvature distribution. 
A definition of a fair curve and specification of the radius of curvature are issues to be examined in the 
future. 
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