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ABSTRACT

In the rapidly changing world, technologies quickly become obsolete and a product should be rapidly
innovated. Under the platform-based product development strategy, innovation of a product is dedicat-
ed to the innovation of a platform. This study handles the problem of determining the optimal timing
of innovating or renewing a product platform. While the frequent platform renewal harms profitability
of the whole product family, a long lasting platform makes its derivative products obsolete, and unable
to create new demands. In order to find the optimal platform life-time compromising such trade-off, a
model for estimating the expected profit gained from a platform during a given life-time is developed.
This model assumes that a newer product substitutes the demand for older products, and a platform is
less likely to be able to adopt a newly developed technology as its life-time is getting longer. The cu-
mulative sales of derivative products are estimated by a diffusion model, and various cases that a se-
ries of derivative products is introduced are examined by dynamic programming approach. When this
model is applied to the IBM mainframe sales data, the optimal life-time is detected by varying the
given life-times. The result shows that the optimal life-time is more sensitive to the speed of obsoles-
cence than platform investment. For a long obsolescence duration, however, slowing down the obso-
lescence speed little contribute to increase the annual profit.

Keywords: Platform renewal, optimal platform life-time, technology obsolescence, diffusion model,
dynamic programming

1. INTRODUCTION

In the rapidly changing world, technologies quickly become obsolete. A new technology enables a
product to have more advanced functions and better performance. Due to such technological ad-
vancement, older products with an obsolete technology are substituted by newer products with a state-
of-the-art technology. Especially for technology-driven products, the customers are highly susceptible
to the functional performance and substitution to a newer product or technology is accelerated. In or-
der for coping with the technology obsolescence, a company should continuously innovate its products
by adopting state-of-the-art technologies.

Whereas continuous innovation adopting state-of-the-art technologies creates new markets, too fre-
quent introduction of products damages profitability of individual products. Because the new product
substitutes demand for the old product, the old product loses its potential sales which have not been
realized until the new product is introduced. For this reason, a decision on when to introduce a new
product compromising cost of the frequent development and benefit of the broadened market is crucial
to the technology-driven companies. Determining the optimal entry timing of a new product has been
studied by a couple of researchers [1-4].

This study handles the problem of determining innovation timing of product platforms. A product
platform is a collection of common elements, particularly the underlying technology elements, imple-
mented across a range of products, namely a product family [5]. Many companies reduce the cost and
time of developing individual products by sharing a common platform. Since the products in a family
are built upon a common platform, technologies implemented in a product are dedicated to the plat-
form technologies. Even when a new technology is available to the company, a product implementing
the new technology cannot be developed if it is incompatible with the platform technology. Therefore,
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technology obsolescence also occurs at a family level, and it has to be overcome by renewing a prod-
uct platform.

Then, when should be a platform renewed to the next generation technologies? The cost of frequent
platform renewal is similar to the new-product introduction; cost of developing a platform, which
usually takes much more cost than developing a derivative products, harms the profitability of the
whole product family. On the other hand, a long lasting platform makes its derivative products obso-
lete, and unable to create new demands. Determining the optimal timing of platform renewal compro-
mising this trade-off is one of the fundamental decisions on sustaining success in product development
[6].

The objective of this study is finding the optimal life-time of a platform by developing a model for
estimating the expected profit gained from a platform during a given life-time. This model assumes
that derivative products based on a common platform are successively introduced, and a newer prod-
uct substitutes the demand for older products. In order to reflect the obsolescence of platform technol-
ogies, the model assumes that a platform is less likely to be able to adopt a newly developed technolo-
gy as its life-time is getting longer. Since we have to estimate the sales volume cumulated over time,
the estimation model is basically based on the demand diffusion model proposed by Bass [7]. In addi-
tion, various cases that a series of derivative products is introduced according to the stochastic emer-
gence of a new technology and its adoptability are examined by dynamic programming. The optimal
life-time is detected by comparing annualized profits over the various life-times.

2. LITERATURE REVIEW

Platform-based product development strategy is a sound tool for providing various products at a low
cost of differentiation. Previous literature introduces many of cases that a well defined platform drives
a company to enormous success in the market by offering customized products both cheaply and
quickly [5, 8-10]. A main issue of implementing platform-based development strategy has been how to
plan ingredients of a product platform. Whereas there is variety of methods for the platform planning,
most of them follow the basic framework proposed by Robertson and Ulrich [11]. In their framework,
components that have little impact on differentiating variety of products and save much cost when
they are commonized are included in the platform. Minimizing impact on differentiating features with
commonized platform elements is also a basic principle in various methods for designing product plat-
forms [12-16].

Whereas those platform studies focuses on how to design a single platform, it has been rarely studied
how to plan upgrade and renewal of multiple generations of platforms. It is the nature of the market
that a product is continuously innovated with a new technology or style, and older products become
obsolete and finally vanished from the market. While a platform is usually utilized for multiple gen-
erations of products adopting new technology or market trends, it should also be upgraded or renewed
when no more adoption is available due to the obsolescence platform technology itself. When to renew
an old platform is a problem of optimizing tradeoff between efficiency and eftectiveness of a platform
strategy [6]. Although rapid renewal of a platform may guarantee its product family always state-of-
the-art, high cost of platform development will ruin the efficiency of product development.

The purpose of this study is planning the optimal timing of renewal of a platform by estimating its
revenue and cost for a given life-time.

As one of those kinds of methods, Gonzalez-Zugasti et al. [16] proposed a real-option based model for
assessing value of a platform from which derivative products are successively developed. Whereas this
model presents a basic framework for analyzing such a platform, life-time concerns of a platform,
which are obsolescing technologies and depreciated development cost, are not involved. In a practical
perspective, Meyer et al. [6] proposes efficiency and effectiveness indices of a platform for detecting
appropriate timing of platform renewal. They insisted that a platform should be renewed when the
efficiency or effectiveness metric drops below a reasonable range in its use. This renewal timing is
detected only when it comes to the face, in the use of a platform. The model proposed in this study,
however, can determine the optimal life-time of a platform even before introducing a platform, by
predicting timely distributed development cost and revenue loss due to technology obsolescence.

The platform life-cycle or renewal issue is closely related to the problem of determining the entry tim-
ing of successively introduced products. At an individual product level, while a new product creates
new markets and substitution demand for an old product, too early introduction may lose the sales of
the old product. In order to find an optimal timing of introduction, a demand model forecasting dy-
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namic growth of sales and substitution from an old product to a new product is required. Norton and
Bass [3] developed such a model that shows cumulative sales of each product as a function of time
adapting Bass’s [7] demand diffusion model, which is a representative model of representing dynamic
diffusion of new technologies or products in the market based on differential equations on change of
sales. Wilson and Norton [4] derived optimal condition for introduction timing based on this model.
They found that introducing a new product as soon as possible or never introducing a new product
according to diffusion parameters, such as potential market size, gross margin, and speed of diffusion,
is an optimal policy, which is called ‘now or never’ rule. Mahajan and Muller [2] also adapted the
diffusion and substitution model of Norton and Bass [3] for finding an optimal policy of successive
product introduction, and proposed ‘now or at maturity’ rule generalizing ‘now or never’ rule, which
also indicates that a new product should be introduced immediately or after sales of an old product
mature. They found this rule by deriving an optimal condition of the differential equations rather than
optimizing the solution function of cumulative sales like Norton and Bass [3]. Whereas those models
assume that a new technology becomes available at a deterministic timing, Krankel et al. [1] provided
an optimal policy for the successive product introduction when a new technology stochastically
emerges. They found that introducing a new product at the intermediate timing between ‘now’ and ‘at
maturity’ can be optimal when obsolescence is stochastically incurred.

Those demand diffusion and substitution models are also adopted in this study in order for predicting
total revenue during a platform life-time. Every derivative product has its own up-and-down sales
revenue curve, and such individual curves are accumulated in a platform revenue curve. The obsoles-
cence of technology prohibits to infinitely accumulating new product sales to an existing platform,
since no more new product can be developed from an obsolete platform. The proposed model enables
to predict the optimal timing of a platform by estimating sales curves of individual products and a
cumulative sales curve of a platform.

3. MODEL

In this study, a model for estimating total profit gained from a product platform and its derivative
products for a given platform life-time is developed. This model captures trade-off between high re-
turn-on-investment of a long lasting platform and lost demand caused by obsolete platform technolo-
gies. Whereas cumulative sales for derivative products continuously increase as time goes by, obsolete
platform technologies limit to adopt state-of-the-art technologies which may create new markets.
Increased cumulative sales of individual derivative products are estimated by a model adapting Maha-
jan and Muller’s demand diffusion and substitution model [2] based on Bass’s model [7]. The ex-
pected profit from introducing a new derivative product is estimated by this model. When a new tech-
nology is available and can be adopted in the existing platform, introduction of a new product imple-
menting that technology is determined by comparing expected profit of introduction and waiting the
next technology. Emergence of a new technology and adoptability of it are stochastically determined,
and the adoptability decays as the platform is getting older. In order to derive expected profit from the
dynamic decision on introduction of new products, dynamic programming model is developed assum-
ing that a company always makes an optimal decision.

3.1 Problem definition

This study assumes a product platform from which a series of derivative products are launched to
timely differentiated markets. As time goes on, new technologies emerge and better products are in-
troduced. While there are several strategies for leveraging a platform to synchronous market segments
[17], timing of renewing a platform is not a concern in those leveraging strategies.

It is also assumed that a newer product totally cannibalizes demand for older products; newly created
sales are solely for a new product, and old products are no more sold after a new product is launched.
It should also be noted that the products are assumed to be durable products so that a product is only
once purchased until it is upgraded to a better and later product.

Introduction of derivative products under those assumptions is illustrated in Figure 1. Platform-based
derivative products are introduced in a sequence, and each product is marketed for different periods of
time. Whenever an existing platform is fairly obsolete, a new platform is developed and derivative
products based on the new platform are introduced in a series. The time periods between the last plat-
form introduction to the next platform introduction is platform life-time. The model developed in this
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study finds an optimal platform renewal timing or optimal platform life-time by estimating profit
gained from a platform and its derivative products.

Platform A Platform B
Product A-1
S
i Product A-2
—
Product A-3
H Product B-1
—
Product B-2
t=Ty t=T, t=T,, t="Tyg, t="Tg t="Tg,

Figure 1. Product family introduction timeline

The profit of a product family and its platform is determined by benefit induced by sales of derivative
products and cost of developing them. At each time period, a new technology is stochastically
emerged, and a decision on whether to introduce a new product is made if it can be adopted by the
existing platform. When a new product is introduced, sales of an old product gradually decrease and
finally disappear in the market. The total cumulative sales of a product are determined by how long it
has been existed in the market until a new product is introduced. In this paper, a diffusion model is
adopted to estimate the sales of derivative products when they are sequentially introduced.

Since sale of a long-lasting product is finally saturated, a new product creating new demands should
be introduced in order for gathering continuous revenue. As a platform is getting older, however, a
new technology is prone to be incompatible with the obsolete platform technologies. In this case, a
new product with state-of-the-art technologies cannot be introduced to the market, and new demand is
also lost. Whenever a platform becomes obsolete, it should be renewed to an advanced platform which
enables to develop a new generation of products.

In this study, emergence of a new technology and its adoptability to a platform is stochastically deter-

mined. Probability that a new technology is available at time ¢, P,(#,), is assumed to follow an expo-

nential distribution. P,(7) is 1 —e ™™ regardless of time 7, where A is a mean number of technologies

emerged in a unit time, and A¢ is length of a time period. Probability that a new technology emerged at
time 7, is adoptable to a platform, P, (#), is assumed to decay following a sigmoid function
1—1/l1+e’12’*/ ’“GJ. Constant d indicates duration of platform obsolescence after which a platform
cannot adopt a newly emerged technology. The adoptability function P,(f) have 0 probability after
time d.

3.2 Sales diffusion model

As mentioned above, the profit gained from a product family is determined by sales of each derivative
product. This study assumes that the increase of cumulative sales follows Bass’s diffusion model [7].
The Bass diffusion model describes the diffusion of a technology or product consists of demand of
innovators who adopt it without any word-of-mouth information and demand of imitators who mimics
behavior of earlier adopters. The basic form of Bass’s model is illustrated in equation (1).

g(T) = [at+bs(T)/N][N-s(D)] (O]

where g(T) is number of consumers who adopt the technology at time 7, F(7) is a cumulative number
of consumers who adopt the technology until time 7, a is a coefficient of innovation, and b is a coeffi-
cient of imitation. This model can be interpreted that @ ratio of potential consumers adopt the new
technology at each time period, and b ratio of potential consumers imitates to adopt proportional to the
earlier adopters.
Mahajan and Muller [2] extended the Bass’s model so as to represent substitution of demand. Whereas
there are several models involving substitution of demand, their model is suitable for a durable product
that is purchased only once until it is upgraded to a later product. When there is only one product in
the market, change of adopters is same as the basic Bass’s model. In Figure 1, from =T, to T, diffu-
sion of product A-1 follows the basic pattern as follows:
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&1(0) = [at+bx,()/N][N1-x,(D)].
The total amount of cumulative sales is derived by summing up those partial changes of sales.
After T,;, however, newly introduced products substitute the demand for the first product. Mahajan
and Muller assume upgrade proportion ¢ by which non-adopters purchase the new product and earlier
adopters upgrade their products to the new generation. Under this assumption, diffusion of product A-
1 and A-2 from T, to T, is made by following equations, respectively:

&, () =ala, + (byx, (1) + b, x, ()| N, 1IN, = s(D)]+ ala; +byx, (1)/ N, 1x, (1)

&) = =a)a, +(byx,(1) + byx, (1) N, [N, = s()] = ala; +byx, (1) N, ]x, (1) -
This model assumes that innovation and imitation coefficients for the upgrading demand, which are
represented by a’ andb’, is different from those of new demand. It should be noted that potential con-
sumers of the later product include those of the older products. Thus, N; is always smaller than N,
where i<j. It is straightforward to extend those equations to more generations of products. The cumula-
tive sales of individual products can be obtained by those equations when introduction timing of each
product is known as illustrated in Figure 1.
This study utilized the simplified Mahajan and Muller’s diffusion model assuming the same innova-
tion and imitation coefficients for every product. The simplified diffusion model enables to form a
quasi-lattice model representing decision branches for successive introduction of products. How to
build a quasi-lattice model and benefit of the quasi-lattice representation comparing to ordinary bi-
nomial tree representation is described in the next section.
Whereas the original model assumes different innovation, imitation, and upgrade coefficients for each
product generation, the simplified model assumes the same innovation and imitation coefficients re-
gardless of generations of a product. Also, the numbers of potential consumers for derivative products
are set to the total potential consumers of the whole product family; every N; is same with total poten-
tial consumers N. Therefore, the diffusion equations used in our model is defined as equations (2) and
(3).

When there is only one derivative product in the market

& () =[a+bx,(1)/ N][N - x,()] 2
When there are more than one products in the market
g,()=[a +bS(t)/N][N—S(t)]+[a'+b'x,,(t)/N][§,x,»(f)] 3)

g,(t)=—a+bx, (t)/ Nlx,(t),i =1,...,1 -1
The estimated parameter values of the simplified model are listed in Table 1. Those values are esti-
mated by minimizing the squared deviation from the observed values using a MATLAB fininsearch()
function.

Table 1. Estimated values of parameter of the simplified model

a b a' b’ N

3.3 Stochastic derivative introduction model in a monopolistic market

How long a platform should be utilized for maximizing the overall profits is determined by comparing
various platform life-times with respect to expected profits gathered from sale of derivative products,
which can be estimated by the sales diffusion model described above. The expected profit varies,
however, according to timing of introducing derivative products within the platform life-time as well
as the life-time itself. Whereas delay of introduction may lose demand for a new product, frequent
introduction takes more development cost and may lose opportunity for selling older products. For the
fair comparison, various platform life-times should be compared by their maximum expected profits,
which are obtained by optimally scheduled introduction of derivative products.

In this study, the optimal expected profit through a certain platform life-time is obtained by construct-
ing a dynamic programming model for optimizing derivative introduction decisions. In this model, the
whole platform life-time is fragmented by discrete time periods, and a decision on whether introducing
a new product or waiting is repeatedly made at each time period, as illustrated in Figure 2. It should be
noted that the market is assumed to be monopolistic; consumers have no other option than to choose
the monopolist’s product. Therefore, the market is dominated by the decision of the monopolist
whether to introduce a new product or wait.
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Figure 2. Decision branches on new-product introduction

Sales of derivative products at each time period are assumed to be determined by their cumulative
sales until the last period, following the convention of ordinary sales diffusion models. In summary,
the dynamic programming model is defined with states indicating cumulative sales of derivative prod-
ucts at each time period and binary branches to the next states indicating decisions on new product
introduction and waiting.

At each time point, new product introduction is determined by comparing the profits from introduction
and waiting. The current profit is computed by adding immediate profit, which is obtained in this pe-
riod, to future profit, which is expected to be obtained from the next period. The future profit is, in
other words, the current profit of the next state. The immediate profits induced by introduction and
waiting, 77 and 7y, are assessed by computing revenue obtained by current sales of products based on
the cumulative sales and cost for developing a new derivative. In Figure 2, the initial state S, goes to S
or Sy according to whether a new product is introduced or not, respectively. If J(S)) and J(Sw) are
maximum profits that can be obtained from states S; and Sy by making optimal decisions for each
further time period, respectively, the optimal decision at current period S, is choosing an option that
gives more value between z+aJ(S)) and my+AaJ(Sw), where Jis the one-period discounting rate. There-
fore, the optimum profit of initial state S, is derived as equation (4).

J(8y) =max{z; +dJ(S,), 7y + (S )} 4)
This optimum value equation holds when adoptable new technology is always available to the compa-
ny. In reality, however, a new technology is occasionally unavailable, and an old platform is prone to
fail to adopt a newly developed technologies. In those cases, an option of introducing a new product is
not available to a company, which has to wait regardless of its optimal decision. The deterministic
dynamic programming model in equation (4) should be augmented to a stochastic model for incorpo-
rating this uncertainty. Then, the expected optimum value of state S, is defined as equation (5), where
probabilities that a new technology is available and it is adoptable to a #;, periods old platform are P,(#;)
and P,(t), respectively.

EJ(S,) = P, (t,)P,(t,)max{z, + SEJ(S,), 7 +OES (S )} +[1= P, (t,) P, )]z +SEI (S,)] (5)
The maximum expected profit from derivative products can be obtained by solving this stochastic
dynamic program. The optimum value of each state is computed by applying the optimum value func-
tion from the last period to the initial period. The optimum value at an initial state is the maximum
expected profit which can be obtained by optimally introduced derivative products.

3.3 Quasi-lattice relaxation of derivative introduction model

The objective of this study is estimating profit gained from a product platform. Since the profit from a
platform depends on cumulative sales of derivative products which are determined by their introduc-
tion timing, platforms with different life time and obsolescing patterns should be fairly compared by
assuming their derivative products are optimally introduced. To this end, we need a model to find op-
timal introduction of individual products. Sales of optimally introduced derivative products are esti-
mated by the simplified Mahajan and Muller’s diffusion model.
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In this study, the optimal introduction schedule is obtained by a dynamic programming method. At
each time period, decision on introducing a new product is made, and sales of derivative products in
that period is determined by the introduction decision as illustrated in Figure 2. Since partial sales
change in a period solely depends on cumulative sales until then, a state of the dynamic program is
defined by cumulative sales of existing derivative products.
As an ordinary dynamic programming does, introduction decision at each time period is made by
comparing profit of introduction with that of waiting. Immediate profits induced by introduction and
waiting, 7; and 7y, are calculated from partial increase of sales in that period and cost of developing a
new derivative product. The profit of introduction is summation of the immediate profit z; and opti-
mum value of the state of next period introduction J(S;). The optimum value J(S)) of any given state S;
is the maximum profit that can be gained from state S; by optimally introducing afterward products.
Likewise, the profit of waiting is summation of immediate profit 7z and optimum value of the state of
next period introduction J(Sy). The optimal decision on new-product introduction at state S, is choos-
ing an option that gives larger profit than the other. Therefore, the optimum value of initial state S is
derived as follows:

J(S,) =max{z, + J(S,), 7, +J(S,)}
where J'is a discounting factor.
This optimum value equation holds only when new technology is always available and adoptable to
the existing platform. According to our assumption, however, a new technology stochastically
emerges and its adoptability decays as a platform is getting older. If an adoptable new technology is
not available at state Sy, an option of introducing a new product cannot be chosen. Where availability
of an adoptable technology at time # is given with probability P,(#;), the expected optimum value of
state S, is defined as equation (4).

EJ(S,)= P, (t,)max {z, + 5EJ (S,). 7, +OEJ (S, )} +[1= P, (t))lzy + GBI (S,)] @)

An expected optimum value of each state is assigned by this formula iteratively from the last period to
the initial period. The expected profit gained from a platform is estimated by computing the expected
optimum value of the initial state in the proposed dynamic program.
It is obvious that the dynamic program for estimating expected profit of a platform creates a binary
tree since there are two options, introduction and waiting, for each state. Because the binary tree expo-
nentially grows by factor of two, the dynamic programming technique cannot efficiently compute the
expected profit as the number of time periods is getting bigger. This problem prohibits analyzing long
horizon of the platform life-time.
In order for resolving this problem, this study introduces a way to reduce the binary tree to a quasi-
lattice type tree. According to the Mahajan and Muller’s model, partial sales of individual products,
which determine gains at each period, depend on the numbers of cumulative consumers of the prod-
ucts, which are represented by a state vector. A closer look, however, reveals that new sales inducing
actual gains only depend on the number of cumulative consumers of the whole product family and that
of the latest product. In equation (3), new sales come only from the latest and the secondly latest prod-
ucts. Changes of consumers of the older products are the numbers of consumers who stop using the
old products and upgrade to the newest product. Therefore, immediate profit induced by new sales at
each period 7 is computed by the summation of positive terms of equation (3) and common profit
margin m as follows:

7= m{(a +1—a)a+bs(t)/ N[N - s(t)]+ ala’ +b'x, (t)/ N][Sxi(t)]]

i=1
In this equation, x,(?) is /() and summation of cumulative consumers of non-latest products Xx(?) is
same as s(¢)-/(f). By replacing this term, we can derive equation (5) which computes immediate profit
from the cumulative sales of individual products.
7 =ml[la+bs(t)/ N[N —s(t)]+ala' +b'1(t)/ N1[s(t) - 1(1)] (5)

By equation (5), we can see that immediate profit at each period is a function of number of total con-
sumers of a product family, which is s(¢), and that of consumers of the latest product, which is /(?). In
other words, immediate profit can be computed by s(¢) and /(r) without requiring number of cumula-
tive consumers of every product. Then, a state of the dynamic program which computes profit gained
from a platform and its derivative products can be defined as a [s(¢), /(¢)] pair.
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Where a state is defined as [s(¢), {(¢)], introduction of a new product leads to the same state at the next
time period regardless of current states. Number of total cumulative consumers at next period s(¢+1) is
increased by summation of all g(#)s from s(¢). As seen in the following equations, s(¢+1) is dependent
on only s(f).

s(t+1) = s(2) + [a+bs(t)/N][N-s(1)] (6)
If we start from a single initial state, all states at the time period ¢ have the same s(¢) regardless of its
previous new-product introduction history.
[XD:JD] s"=s"+(a+b N)(N s1)

4
1% = a(a+b%)(N—s”’)+aas"

[P, 7]

1 :oz(aerS;)(Nfs’)Jroz(aerE)(x4 -1y
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[s,11] ) N

1’ =a(a +b%)(N<y”)+ aas”®
[P,(1), 7]

[1-P,(0), 7]

(]

[1-P (1), m,<]

[s707] sh=s"
t=0 t=1 t=2 oF C L e
" :(l(a+/)AW)(N*.YF)+(I(IZ+[)%)(S( -1

Figure 3. Quasi-lattice representation of successive introduction decisions

If new-product introduction is waited, /(z+1) simply becomes /(¢)+g,(f) where /(¢) is x,(¢). Since g,(¢) is
a function of /(¢), the next state is determined by the current state. Assuming that (n+1)th new product
is introduced when there are n product at time ¢, /() is x,(¢) while /(++1) is x,+(z+1). Because a new
product has no cumulative sales when it has been introduced, x,.(#+1) becomes partial sales of the
newest product. Thus, /(¢) is computed by equation (7) when a new product is introduced.

X, +)=ala+bs(t)/ N][N —s()]+ala’+b'x,.,(£)/ N][s(t) - x,,, (£)] where x,1(£) =0

I(t+1)=ala+bs(t)/ N][N — s(t)] + aa's(t) (7)
There is no /(¢) term in equation (7). It means that cumulative sales amount of the newly introduced
product is determined independently from the last state. Therefore, every state at time ¢ goes to the
state [s(t+1), /(1 +1)(= a[a +bs(t)/ N][N —s(¢)]+ aa's(¢)) ] when a new product is introduced.
Utilizing this property, we can construct a quasi-lattice representing successive decisions on new-
product introduction as Figure 3. Whereas there are two states [sB,lB] and [sC,ZC] at time =1, they go to
the same state [s”,/°] in case that a new product is introduced. If a new product is not introduced, the
two states go to different states [s”,/°] and [s",/7], respectively. In a quasi-lattice, the number of states
at each time period increases by one instead of being multiplied by factor of two as a binary tree. The
total number of states of a quasi-lattice spanning 7 time horizon is (7+2)(7+1)/2 which is a polynomial
number.
The dynamic programming approach is applied to this quasi-lattice representation of successive prod-
uct-introduction decisions. Summarizing the previous derivation and equations, the optimum value
function of a quasi-lattice model is defined as equation (8).

EJ({s(0).1(0)}) = P, (t,) max{z, + 6EJ(S,), 7, +SEJ ()} +[1= P, (t)]l7y +OEI(S,,)]

s(t+1)=s(t)+[a+bs(t)/ N][N —s(1)]

S, ={s(t+1),ala+bs(t)/ N][N —s(t)]+ aa's(t)} ®)

Sy ={s@+D,1(t)+ala+bs(t)/ N[N —s()]+ala"+Db'I(t) N][s(t) - 1(1)]}

7, =—k, +mf[a+bs(t)/ N[N —s(0)] + aa's(t)]

7y =mlla+bs(t)/ N[N —s(t)]+ala' +b'1(t)/ N[s(t) - ()]

n+l
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4. CASE STUDY: IBM MAINFRAME PLATFORM

4.1 Existence of optimal renewal timing of a platform

The optimal life-time of a platform is duration for which a company achieves maximum annual profit
by marketing its derivative product. We can find such an optimal duration by enumerating various
platform life-times, and assessing expected profit for each case using the quasi-lattice model based
dynamic programming technique. As shown in Figure 4, annual profit for each planned platform life-
time is estimated, and the optimal life-time can be determined by choosing a life-time indicating the
highest annual profit.
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¥ 3 5 7 9 11 13 15 17 19 21 23 25 27 29

-500

Platform life-time (years)

Figure 4. Annual profits for planned platform life-times (K,s = $500K, d = 10 years)

Among parameters affecting the optimal platform life-time, investment cost in a platform development
and speed of platform obsolescence are key parameters affecting the optimal life-time of a platform.
Moreover, the two parameters are correlated each other. As a broader portion of a product is charged
by a platform, platform development takes more cost. Whereas an expensive platform should be uti-
lized for a long time in order to achieve high return-on-investment, a broad platform obsolesces faster
than a narrow one since it has a bigger chance to encounter unadoptable innovations. Therefore, the
optimal life-time is analyzed with respect to those two parameters.

Other factors, like rates of technological adoption involved in diffusion functions, investment in de-
veloping derivative products, and a discounting rate are mutually independent and monotonically af-
fect the optimal life-time and profit of a platform. Where a product is faster adopted and developed
with a lower cost, the optimal platform life-time shortens since considerable amount of profit over-
coming investment in a platform can be obtained in a shorter time. A larger discounting rate lengthens
the platform life-time since profit gained in a future is undervalued whereas immediate investment
cost for a platform remains large.

4.2 Influence of obsolescence speed and platform investment

Figure 5 illustrates optimal life-time of a platform with respect to investment cost of platform devel-
opment and duration of platform obsolescence. A platform can no longer adopt a new technology after
the duration of platform obsolescence, as described in section 3.1. The diffusion parameters are de-
rived from the IBM mainframe case. Gross margin of a unit product and investment cost of developing
a derivative product are assigned to $1K and $100K, respectively. It is also assumed that internal in-
terest rate of return is 20% per year.

Figure 5 shows contour plots for optimal platform life-times with respect to obsolescence duration and
platform investment cost. It is found that the optimal platform life-time is longer than 12 years accord-
ing to the optimal timing graph. Moreover, the optimal platform life-time remains to be around 12 to
13 years, specifically 12.5 years, until obsolescence duration reaches 13 years. It means that a platform
is utilized for at least 12.5 years even though no more new product can be introduced. Since consum-
ers have no other choice than to buy a monopolist’s product, a single model is continuously sold in a
market without being substituted by other products until the entire market purchases the product.
Therefore, the monopolist has no incentive to introduce a new product before the market is saturated.
After the market is saturated, however, the monopolist also has to renew its obsolete platform for in-
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troducing a new product creating new demands. We can expect different results for a competitive
market, which is reserved for future research.

Another observation is that the optimal life-time is insensitive to platform development cost, contrary
to the obsolescence duration. Since a platform lasts at least until the market is saturated, as mentioned,
the platform investment cost takes relatively small portion than overall revenue which is over $20,000.
In this situation, reducing annually distributed platform investment cost by utilizing it a year more
brings even bigger loss of annualized sales revenue. Therefore, optimal platform life-time is dedicated
to the time for maximizing annualized sales revenue rather than time for distributing platform invest-
ment.

As shown in Figure 6, a company can achieve amount of profit with infrequent renewal of platforms
despite of rapid obsolescence of technologies. It is because the assumed monopoly guarantees that
every consumer buys even an obsolete product since he/she has no other option. Even in this situation,
slower obsolescence brings higher profit of platforms. The amount of increase, however, is small for
short or long obsolescence durations. When obsolescence duration is shorter than 13 years, the optimal
platform life-time is commonly 12 to 13 years, and difference of obsolescence duration does not in-
duce large difference in overall profit. On the other hand, mitigation of profit increase in long obsoles-
cence duration is originated in converging property of the annualizing function, which is 1/n in this
study. Therefore, the amount of profit increase also converges to 0 accordingly.
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Figure 5. Optimal platform life-time
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Figure 6. Optimal annual profit with respect to platform life-time (Kyr = $500K)
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5. CONCLUSIONS AND FUTURE RESEARCH

How long a platform should be sustained is an important strategic decision of a company. Whereas a
company wants to keep its platform as long as possible for achieving high return on platform invest-
ment, it may lose the market since a state-of-the-art product cannot be introduced from an obsolete old
platform. The purpose of this study lies in supporting to make this strategic decision by finding the
optimal renewal timing of a platform, which compromises trade-off between cost efficiency and tech-
nology obsolescence.

In principle, the optimal platform life-time maximizes the annual profit gathered from sales of plat-
form-based products. The annual profit is obtained by subtracting the annualized cost from the annual-
ized revenue. Whereas the cumulative revenue continuously increases as the life-time is lengthened,
annualized revenue drops after no more products are sold in the market. The annualized cost naturally
decreases as a platform is utilized for a longer duration. In order to find the optimal life-time, annual-
ized revenue and cost have to be estimated with respect to various platform life-times.

This study proposes a method for estimating revenue and cost of a platform throughout a given life-
time. The revenue gather from the sale of products are estimated by Muller and Mahajan’s diffusion
model which modifies Bass’s original diffusion model for involving substitution of generational prod-
ucts. Costs for platform and derivative development are assumed to be raised when a platform and
derivative product are introduced, respectively. Because the revenue and cost depends when and how
many products are introduced, the maximum profit is obtained by a dynamic programming model
which explores the optimal introduction schedule. The maximum profit for each life-time is compared
to other life-times, and the one which presents the highest value is selected as the optimal life-time.
Based on the proposed model, the optimal platform life-time of IBM mainframe platform is estimated
as a case study. The results show that there is an optimal life-time which brings biggest profit to a
platform. Among other factors, the optimal life-time is mainly affected by obsolescence speed of plat-
form technologies. It is also found that the increase of optimal profit according to the slowed obsoles-
cence is mitigated as the obsolescence duration is getting longer. It means that efforts for slowing
down the obsolescence speed are more beneficial for moderate obsolescence durations rather than
originally long ones.

Whereas the platform investment cost also determines profit of a platform, it is revealed that the op-
timal life-time is fairly insensitive to the platform investment. Since an even obsolete product is sold
until the market is saturated, under the assumption of monopoly, the platform investment takes rela-
tively little portion in overall profit. This result may be different for a competitive market, which is
reserved for the future research.

In this study, a method for determining how long to use a platform for achieving both cost efficiency
and market effectiveness is developed. Whereas several meaningful results on platform life-time have
been revealed, those are derived under the assumption of a monopolistic market. In the future research,
optimal platform life-time in a competitive market will be analyzed. Additionally, the value of other
strategies, such as enhancing robustness of embedding flexibility, for managing technology obsoles-
cence without rapidly renewing a platform, will be assessed in order to support choosing the most
profitable strategy among them.
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