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Abstract:  

Engineer’s often develop abstract conceptual models of products using function based 

languages. The expectation is that these models, even when prepared by different engineers 

will be similar if not identical in form. In practice, this is not at all the case, particularly when 

the modelling form is highly abstracted from physical reality. This paper explores a proposed 

method that can identify differences in system perception amongst engineers and supports the 

development of metrics that enable model regions where perceptions differ to be quantified 

and identified. These regions are suspected to be regions where creativity and innovation may 

be readily applicable to the system design. The work in this paper is supported by an initial 

pilot study as a foundation for further work. 
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1. Introduction 

Prior to the emergence of geometric Computer-Aided Design (CAD) systems, engineers relied on hand-

sketches and drafted drawings to develop design concepts. CAD systems, built on geometric primitives 

(a vocabulary) combined with a geometric algebra (a grammar for developing higher-order concepts 

from primitive components), enabled engineers to explore early design concepts on the computer. By 

combining CAD systems with engineering analysis and manufacturing systems, even higher-order 

reasoning about the performance or manufacturing of the design could be done in early design stages. 

However, CAD models and all the reasoning relying on it work only if form-related information (form 

= geometry + material [1]) is available to model. Coupled with a well-defined vocabulary and grammar 

this allows “differently constructed” CAD models to be translated into different CAD packages and to 

be broadly understood by different engineers. There is no CAD-equivalent system that provides for 
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modelling, reasoning, and decision support, such as that afforded by geometric CAD, to the early design 

stages where form is not yet known.  

In this abstract phase of the design process, the designer’s goal is to identify the functional underpinnings 

that will ultimately lead to the form of the design artefact. To support this understanding, multiple model 

formulations have been developed to provide a link between an abstracted system concept, and the 

physical reality of the design artefact. However, unlike the geometric and material models underlying 

CAD, the models developed for this abstract domain may often exhibit multiple “correct” models, 

differing in the level of abstraction and differing due to individual designer perspectives. This ability for 

two designers to see the same system differently greatly complicates the development of any 

computational support tools for these modelling languages and significantly increases the difficulty to 

assess the true “difference” between two valid representations. Furthermore, the identification of the 

model elements where model perception diverges is hypothesized to represent a potential point for 

creative interpretation of the design.  

2. Motivation and Background 

It is a well-known occurrence in design whereby different designers can produce equally valid abstract 

simple models of the same design [2]. These differing models are likely the result of the verdicality of 

perception, an underlying cognitive process related to our own experiences with illusion. If we consider 

a classic example of illusion as shown in Figure 1, some will see a young lady, while others see an old 

woman. Research suggests that how you see this image is related to the preconceptions that you have 

when the image is shown [3]. Similarly, for a designer, the abstraction that they construct as a model of 

a system may be influenced by their own preconceptions about the system and the modelling process. 

While several modelling processes are commonly employed, we 

will primarily focus on functional modelling in this paper. 

2.1. Functional Models 

Function-based design is an approach to model a technical 

system in terms of its abstract functions without commitment to 

a specific form, and reasoning on the system’s functionality in 

order to perform various design tasks. The practice is well-

recognized as a means of modelling design concepts in an 

abstract, form-neutral manner [4, 5], studying existing designs 

through reverse engineering [5, 6], and exploring solution 

variants [4, 5, 8]. Various modelling and reasoning have been 

proposed to perform these tasks. 

Engineered artefacts are designed to serve specific purposes, and 

technical functions are an abstract way of describing the device’s 

actions intended by the designer toward serving that purpose [4, 

5]. The philosophy that design is a process of deriving form from 

function has produced multiple design models in the 1970s 

through the 1990s [5], mainly in the artificial intelligence 

community. Design texts and research suggest that analysing and 

thinking about design problems and products in terms of functions helps to decompose the problem [5, 

9, 10], expand the search spaces [4, 5, 8], understand the workings of devices [3], and archive existing 

designs for later reuse [7, 11]. To do these activities in a more reliable and controlled manner, the need 

to formalize the domain of functions arises, and to this end, various formalisms have been proposed, 

both in Artificial Intelligence (AI) research and in engineering design research.  

In AI research, functions are generally viewed as the result of the interaction between various aspects 

of the design, such as the device’s structure and behaviour, the environment, and the user’s intent. For 

example, function has been defined as “the relation between the goal of a human user and the behaviour 

of a system” [12]. Representations such as Function-Behaviour-Structure (FBS) [13, 14], Function-

Behaviour-State (FBSt) [9], and Structure-Behaviour-Function (SBF) [15, 16] are broadly based on this 

view, although each supports a different types of reasoning. Other views attempt to describe functions 

 

 Figure 1. A Young Lady – Or – An 

Old Woman? 
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as the device’s effect [17], or using the device’s viewpoint on its actions [18]. Various formalisms, in 

form of representations [18, 19], languages [20], ontologies [21], and software tools [9, 22] have been 

proposed to support reasoning based on this general view of functions. Notable examples are the FBS 

Modeler [18] that supports problem decomposition based on the FBS model, the IDeAL [16] and Kritik 

[15] tools that support analogy-based search using the SBF model, the Causal Functional Representation 

Language (CFRL) [23] that describes functions as cause-and-effect, and the Schemebuilder tool [22]. A 

more detailed account of function-based reasoning can be found in [24-26].  

In engineering design, the systems-based view of functions as the transformations of material, energy, 

and information flows through the system is prevalent [4, 5, 8]. A second view, the Contact-and-Channel 

model, describes functions as the interaction between contacting surfaces [27, 28]; however, the 

following discussion relies only on the transformative view. A graph-based representation, the function 

structure [4], is commonly used to this end. The nodes are the transformative actions and the edges are 

the flows of material, energy, and information subject to the transformations. Tools and methods that 

leverage this representation have been built to assist in conceptual design tasks such as problem 

exploration [29], decomposition [4, 5], solution search [8], solution synthesis [31], concept generation 

[32], failure modelling [33], product similarity analysis [34], modelling signal flows [35, 36], and for 

reverse engineering tasks such as design understanding and archiving [7, 11]. Various levels of 

formalisms exist to model carrier flow relationships, computer-aided functional design, and form 

derivation from functional description [37]. 

Early function vocabularies include a two-level hierarchy of Motion, Power, Enclose, and Control 

functions [38] and the set of 46 functions discovered through forensic study of failed army helicopters 

[39]. Another representation is the multi-level flow model [40], which includes a vocabulary of six 

material and energy processes, four actions, and three relations, in order to model large systems. A major 

and popularly used vocabulary is the Functional Basis (FB) [6], which was developed by empirical 

dissection of electro-mechanical products’ functions and flows through reverse engineering. The 

functions and flows were catalogued, until no new terms were necessary to describe subsequent 

products. The resulting vocabulary was reconciled later with a similar effort at the National Institute of 

Standards and Technology [41] to form a reconciled vocabulary [42] containing 53 verbs for modelling 

the functions and 45 nouns for the flows, organized into a three-level taxonomy.  

The Design Repository at Oregon State 

University (OSU) [11, 43, 44] is an 

online archive of design information of 

a wide variety of products, obtained 

through systematic reverse 

engineering. It contains data about 

components, functions, and other 

aspects of the products. It is currently 

used to support multiple research 

projects and contains information 

about 184 products and 6906 unique 

parts. The function models in the 

Design Repository are created using the FB as the language. Although there were initial attempts to 

create grammars [35] to accompany the FB, formal grammars have not been developed for that purpose. 

The FB and the Design Repository have been remarkable assets for design research over the past several 

decades; many of the reasoning systems, tools, and methods mentioned above under the Engineering 

Design section are based on the FB vocabulary and the Design Repository as a source of function 

models. Notably, the development of the FB, especially its convergence into a finite set of terms and 

reconciliation with other designers and other vocabularies [41], is testimony for the preference of human 

designers to reuse function terms in models. Yet, these human designers can construct multiple correct 

(based on vocabulary and grammar) yet equivalent (although not necessarily identical) functional 

models of the same system as shown in Figure 2. Note that neither the order the number, or even in some 

cases the type of functions is sufficient to uniquely establish the form of the model. 

 

Figure 2. An example of 3 equivalent functional models of a 

common AC/DC adaptor plug with an on/off switch. 
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2.2. Alternative Modelling Approaches 

Aside from functional modelling, other techniques have gained more extensive use in industrial practice. 

The Systems Modelling Language (SysML) is a widely utilized approach in systems engineering for the 

modelling, specification, analysis and verification of complex systems. Such systems often necessitate 

the modelling of hardware, software, information, personnel, and facilities. These models are 

represented with a set of nine different network diagrams composed of abstract blocks connected with 

11 types of modelled flows. Through these graphs, the Requirements, Context, Use, Structure, 

Behaviour and Allocation of the system are readily modelled [45], although the different graphs may 

not be internally consistent. 

An alternative modelling approach, known as Object-Process Methodology (OPM) derives a 

hierarchical set of graphs composed of entities and links which are defined using the Object-Process 

Language (OPL) a subset of English. OPM represents a minimal ontology modelling language 

emphasizing clarity and comprehension versus completeness [46]. However, it is possible to convert 

OPM models to SysML models. 

In addition, there is a related mathematical modelling technique known as Bond Graphs (BG). Bond 

Graphs represent complex multi-domain systems by modelling the energy and power flows through the 

system as defined by effort and flow variables. These efforts and flows define a graph, connected by 

nodes which enforce mathematical relations upon their connecting flows. Through the application of 

specific rules, it is possible to derive a mathematical expression of the behaviour of the system. [47] 

Notably, each of these approaches are constructed upon a graph substructure and all of these approaches 

employ a limited vocabulary (describing vertex and edge behaviours) and a syntax of rules which define 

the relationships between vertices and edges and the validity of the graph construction. As such, the 

construction of these abstract system models may be modelled as a Probabilistic Network Structure. 

2.3. Implications for Creativity in Engineering Design 

Treffinger et al. [48] reviewed over 100 studies on engineering design creativity and proposed a 

framework of four cognitive processes that support creativity in engineering design. These processes 

include: 1) Divergent thinking (idea generation), 2) Convergent thinking (idea development), 3) 

Application of specific personal characteristics (a willingness to explore new ideas), and 4) Reflection 

(a consideration of the effects of their choices) [48, 49]. Functional Modelling can embody many of 

these cognitive processes. Generating a model itself is an exercise in convergent thinking, but 

recognizing that you could generate the model in a different (but equivalent) representation is an exercise 

in both divergent thinking and requires the application of specific personal characteristics. And once 

multiple models exist, reflection upon the implications of the differences is virtually inevitable. 

Divergence in models suggests an underlying diversity in perspective of the individual members of the 

design team. Often this diversity of perspective offers an advantage to the design team over a more 

heterogenous group in divergent thinking processes [50]. However, this same diversity, may hamper 

convergent thinking processes if it is not recognized and understood by the design team []. Convergent 

thinking is also important for a design team to successfully develop a shared understanding of the design 

solution so that a creative design can be adopted by the team [51]. The knowledge creation necessary to 

create a shared understanding amongst the team members is a significant factor in the performance of 

new products [52]. 

3. Pilot Study Theory and Methodology 

Our initial goal with this pilot study is to begin to answer a couple of questions: 

Q1) Do different modellers show correlations between different models? 

Q2) Do individual modellers show similar modelling patterns between models of different systems? 

Q3) Do individual modellers show even more similar modelling patterns between models of more 

similar systems? 

Q4) Can overall profiles of modeller behaviour predict model construction? 

Q5) Are these patterns consistent at different abstraction levels? 

Ultimately, it will take additional research to fully answer these questions, but initially the goal is to 

determine if further research is warranted. 
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A functional model can be thought of as a graph, composed of vertices and edges. As shown in Figure 

3, a general form of this graph would involve every vertex (denoted with circles in Figure 3) leading to 

a set of every possible function in the functional vocabulary, with each of the possible edges (denoted 

with arrows in Figure 3) representing a possible flow.  

The existence or nonexistence of each edge is determined by the 

designer. However, the state of an edge can be determined 

probabilistically based on the cumulative behaviour of one or 

more designers. We can define a state transition matrix, [S] where 

Sij represents the probability that the edge from state i to state j 

exists in the model. Under the current formulation only one edge 

exists between any two vertices. Furthermore, the vertices in a 

functional model are composed of separate networks comprised 

of material, energy and information flows. 

State Transition Matrices (STM), used to mathematically 

represent probabilistic network models, are used to model the 

functional modelling behaviours inherent within a functional 

model. The STM represents the probability that given a specific 

function, that the next function in the model is another function 

in the Functional Basis (FB). By analysing the correlations 

between the generated STMs it becomes possible to identify the 

differences within abstract system models which can be 

attributed to designer characteristics.  

In our pilot study, we used two sets of functional models. The 

first set of models represent three products (a 3-hole punch, an 

emergency radio, and an iced tea brewer) which were modelled 

by an expert functional model user (10+ years of experience applying functional models to engineering 

design), and a novice user (a graduate student) recently trained in functional modelling. The resulting 

STMs for each model and user were generated from their models and compared via a global correlation 

coefficient. The second set of functional models represent four products all produced by a common 

group of experienced and similarly trained function modellers. These models were compared to the 

composite STM generated by using the other three models. 

4. Pilot Study Results and Conclusions 

In the first part of the study, the STMs for each functional model and designer were generated. The FB 

contains three levels of abstraction, the primary, secondary and tertiary levels, with the tertiary level 

being the least abstract. By generating the models at the tertiary level, we could further abstract the 

model to the secondary and primary levels. Each of these STMs were generated at the Tertiary level of 

the FB. In addition, a Tertiary cumulative STM representing all 3 product models generated by each 

designer was calculated. With the models generated, the global correlation between each resulting STM 

was calculated and are shown in Table 1.  

Table 1. Correlations between users at the Tertiary Level of the FB. 

 

In Table 2, we compare the STM correlations at each of the levels of the FB between the novice, the 

expert, and the combined novice and expert (combined) groupings.  

 

Figure 3. Conceptual 

Representation of the network 

beginning with Function 1. 
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In part 2, four additional tertiary level models from 

another common group of experienced users were 

compared. We selected two pairs of related products. 

One pair (models 1 and 2) was a coffee brewer and 

expresso maker, and the second pair (models 3 and 4) 

was a palm sander with dust collector and a hand 

vacuum. Additionally, combined STMs were generated, 

including a combined STM model that excluded each 

individual model in turn (i.e. All but 1 is a combined 

STM considering models 2, 3, and 4). Table 3 shows the 

resulting correlation coefficients. 

5. Discussion and Future Work 

Reviewing the results from Tables 1, 2 and 3, we note several interesting patterns. Table 1 shows that 

the novice STMs tended to resemble novice STMs and expert STMs tended to resemble expert STMs 

(as seen by the higher correlations). Thus, we do see differences between these groups (Q1 and Q2). 

Furthermore, the Tertiary (cumulative) STM for each user is more predictive of each of the 3 product 

STMs than any single individual STM (except for the product itself). Yet, the cumulative novice STM 

bears very little resemblance to the cumulative expert STM. This supports the assertion that different 

user groups (novices vs. experts) have different modelling behaviours (Q1 and Q5). 

This analysis is further supported in Table 2, where despite changes in the level of abstraction, we see 

low levels of correlation between the two users (Q5). However, when we generate the combined STM 

from the expert and novice data, we do see much higher correlations between the STMs at all levels of 

the FB (Q4). With a suitable sample size, it may be possible to generate an STM that can identify 

instances where a model deviates from the “norm” and thus a divergent perspective is being applied. 

In Table 3, we further note that the pairing of related products (models 1 vs. 2 and 3 vs. 4) yields strong 

correlations between the STMs (Q3). We further note that the comprehensive STM (data from models 

1-4) produced high correlations to all STMs and that the worst correlations were to comprehensive STM 

that did not include the specific functional model being compared. With only four models in the set, this 

is not surprising. However, the overall high correlation between the comprehensive STMs and the 

individual models produced is encouraging (Q4). 

Based on the data from this pilot, we intend to conduct a broader study, including more participants, 

more models, and examining additional mechanisms to generate and compare STM representations of 

Functional Models. 
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