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Abstract: Structural complexity metrics provide information about the structure of 

technical and socio-technical systems, represented as networks. However, 

calculating multiple metrics of a network manually requires a lot of time and effort. 

Thus, to increase the efficiency in structural complexity management, a tool in 

Soley Studio is proposed that performs analyses of complex networks 

automatically. This tool analyses socio-technical systems networks using a set of 

structural metrics and supports the visualization of the results. Here, three of the 

structural metrics implemented are presented in depth and applied to a case study of 

an electrical Formula Student racing car. 
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1 Introduction 

The increasing complexity in product development is inevitably coupled to complexity in 

engineering design processes and the organization conducting the product development 

(Sosa et al. 2004; Schweigert et al., 2017). Especially when different departments in the 

organization need to work together, for example between the design and simulation 

departments, the growing product and process complexity lead to additional challenges. 

Therefore, methods of complexity management like matrix-based or graph-based 

approaches have a long tradition of application in handling complex product development 

processes and structures (Eppinger & Browning, 2012). 

Graph-based approaches gain increasing attraction in the community as the tool 

landscape is growing. The resulting visualizations are useful for decision making and are 

arguably in many cases easier for non-experts to understand - compared to matrices 

(Kissel, 2014).  

Furthermore, metrics add a quantitative dimension to the often qualitative results of 

graph-based analyses. When combining these two techniques – graph-based approaches 

and metrics – holistic analyses of engineering design processes and collaboration 

networks can be conducted (Kreimeyer, 2009). However, to apply these analyses in 

industry consistently, it is necessary to enhance their usability and improve the cost-

benefit relationship. Therefore, this paper proposes a metrics toolbox implemented in the 

graph-based tool Soley Studio. This toolbox contains workflows that calculate structural 

metrics for analyzing collaboration networks at department interfaces and for estimating 

the understandability and transparency of the modeled systems. 
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2 Related Work 

The toolbox developed in this work is based on existing structural complexity metrics. 

This section gives a brief overview of existing work on complexity metrics within 

technical product development, as well as related work.  

The work of Kreimeyer (2009) describes 52 structural metrics that can be applied on 

complex networks of engineering design processes for providing additional insights. 

These metrics will generate a practical application by applying structural complexity 

management on complex engineering networks. 

The insights in complex networks provided by the structural metrics can be used for 

gathering information about existing process models and for structuring new process 

models consistently (Mathieson and Summers, 2017; Schweigert et al., 2017), as 

understanding the structure of a system is essential for predicting its behavior (Oehmen et 

al., 2015). Furthermore, this information about the complex network structure can reduce 

the risks in the planning of processes through better perception of impacts or changes.  

Building on the Goal-Question-Metric approach by Basili et al. (1994), the metrics shown 

in Table 1 in Section 4.1 have a translation to barriers at the interface of design and 

simulation departments (cf. Schweigert-Recksiek and Lindemann (2018) for details). 

While the term metrics is often used in the sense of performance metrics in engineering 

design (O'Donnell & Duffy, 2005), this paper focuses on structural metrics. The sources 

for these structural metrics are listed in Table 1 in Section 4.1. 

Further metrics, such as “cognitive weight” capture the understandability and user-

friendliness of the modelled system (Wang, 2006). Thus, areas within the modelled 

system that are hard to comprehend can be identified, and for example, be the focus of 

trainings. 

Moreover, computing understandability-related metrics automatically will allow, in 

future work, to develop a self-optimizing presentation of qualitative analysis results as 

graphs by displaying the largest amount of information that is still understandable for the 

human analyst. 

3. Methods 

For the development of a toolbox for managing complex systems using structural metrics 

and to validate its working, a case study is performed. The upcoming sections provide 

information about the dataset on which the case study is conducted and which graph-

based tools are used for the implementation of the proposed toolbox. 

3.1 Dataset University Racing Eindhoven 

To illustrate the application of the toolbox, this paper presents the analysis of a dataset 

obtained from design documentation of the Formula Student team of the Eindhoven 

University of Technology; University Racing Eindhoven. Every year the team designs, 

builds, tests, and races a single-seated formula-style racing car. In 2015, the team built its 

first four-wheel drive electrical racing car and has already realized its fourth, electric, 
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four-wheel drive racing car from which the dataset is obtained. The goal of the case study 

behind the dataset was to improve the test steps and integration steps within the 

development of the racing car. 

3.2 Soley Studio 

Soley Studio is a commercially available tool for modelling, analyzing and visualizing 

graph-based data models and allows to modify and develop analysis solutions. Therefore, 

it is suitable for the determination of structural metrics for a complex network. The data 

of a network can be visualized in a graph, to which different layouts can be applied. Even 

though multiple tools for that purpose are available on the market, Soley Studio has been 

chosen since users are able to program and share tailored analyses workflows.  

Furthermore, the software solution is equipped with a multiplicity of library elements for 

analyzing data, which can be combined and extended by the user for creating a tool with 

desired functions. These extensions can be created using a programming language that is 

based on the GrGen.NET documentation (Jakumeit, 2017) for graph modeling, pattern 

matching, and rewriting. The data that is imported in Soley Studio can be transformed 

and analyzed based on transformation rules for graph-based models, after which it can be 

presented as graphs, charts, tables or matrices. 

3.3 GrGen.NET 

In 2003, the open source GrGen project was established as a response to the demand for a 

software development tool for analyzing graph-based intermediate representations.  As a 

result, GrGen.NET was developed, which has been developed into a tool for pattern 

matching and graph rewriting that is applicable for general applications (Jakumeit, 2017). 

Furthermore, GrGen.NET is used for transforming intuitive and expressive rule-based 

specifications into efficient .NET code (Jakumeit, 2010). 

4. Deriving Structural Metrics from Collaboration Graphs 

Managing complex systems in technical product development can be performed by 

deriving structural metrics form collaboration graphs. In this section, an overview of the 

metrics that are implemented and visualized using Soley Studio is presented, after which 

three metrics are depicted and applied on the dataset of University Racing Eindhoven. 

4.1 Metrics Overview 

A selection of fourteen metrics out of the 52 structural metrics as described in the work of 

Kreimeyer (2009), as presented in Table 1, has been implemented in Soley Studio for 

analyzing complex networks. From these implemented metrics, three exemplary metrics 

are expanded in the next sections. These metrics are then applied on the case of 

University Racing Eindhoven (c.f. Section 3.1). 
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Table 1. Overview of the fourteen metrics (Kreimeyer, 2009) of which the calculation is 

implemented in Soley Studio. 

Structure Metric Structure Metric 

 

 

1: Number of 

Domains 

(Gruhn & Laue, 

2006) 

 

 

 

 

8: Number of 

Unconnected 

Nodes 

(Maurer, 2007) 

 

 

2: Number of 

Nodes per Domain 

(Azuma & Mole, 

1994; Browning, 

2002; Gruhn & 

Laue 2006) 

 

 

9: Number of 

Connected Nodes 

 

 

 

 

 

3: Number of 

Edges per Domain 

(Browning, 2001) 

 

 

 

 

 

10: Number 

of Reachable 

Nodes 

(Maurer, 2007 

202) 

 

 

 

4: Number of 

Edges per Node 

(Browning, 2002) 

 

 
 

 

11: Height of 

Hierarchy 

(Maurer, 2007, p. 

218) 

 

 

 

5: Outgoing 

(Activity) and 

Incoming 

(Passivity) Edges 

per Node 

(Lindemann, 

2007) 

 

 

 

12: Width of 

Hierarchy 

(Maurer, 2007; 

Robertson & 

Seymour, 1986) 

 

 

 

6: Degree 

Correlation 

(Nodes) 

(Ahn et al., 2007; 

Nikoloski et al., 

2005) 

 

 

 

13: Snowball 

Factor 

(Loch et al., 2003) 

 

 

 

 

7: Fan Criticality 

(Gruhn & Laue, 

2006) 

 

 

 

 

 

 

14: Cognitive 

Weight per 

Domain 

(McQuaid, 1997; 

Shao & Wang, 

2003; Wang, 

2006) 
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4.2 Activity and Passivity 

The first metric describes the number of outgoing (activity) and incoming (passivity) 

edges per node. The output is a list of values for activity and passivity for each of the 

nodes within the domain. The results are visualized using an influence portfolio 

(Lindemann et al., 2009). It can be used to classify the intensity of changes in the 

network acting on a certain node. Furthermore, the nodes with the highest relevance 

within the network can be identified.  

For determining the metric, standard library elements in Soley Studio are used for 

determining the activity and passivity for each of the nodes in the network. Using both 

the activity and passivity, the criticality of each of the elements can be calculated using 

Equation 1 (Lindemann et al., 2009). 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 = 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⋅ 𝑃𝑎𝑠𝑠𝑖𝑣𝑖𝑡𝑦 (1) 

A high criticality of an element indicates a high number of indirect dependencies. Critical 

elements are strongly interlinked within the network and therefore have a high influence 

on the overall system behavior. Changes to these critical elements can influence large 

parts of the network and should therefore be avoided when radical changes are not 

desirable. 

Besides the critical elements, the elements with a criticality low value are indicated as 

inert. These elements are weakly interlinked in the network and changes would not affect 

a large number of other elements. 

4.3 Snowball Factor 

The snowball factor, as presented in Figure 2, describes a measure for the spreading of 

information or errors within a network and is the sum of the product of the height and 

width of the hierarchy of the considered network. The height of the hierarchy is defined 

as the number of levels that are present in the tree structure of a network and is 

determined level by level. The width of the hierarchy is determined level by level and is 

defined as the number of leaf nodes for each of the levels of a tree structure in a network. 

Leaf nodes are located at the end of the hierarchy and have incoming edges only. When a 

node is accessed more than once from different levels, the lowest level is used for the 

computing. 

 

Figure 2. Snowball factor, spreading of information or errors within a network (Kreimeyer, 2009). 

For each of the levels, the snowball factor is weighted with the inverse of the length of 

the shortest path to the root node. The root node of which the snowball factor is 
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determined, is defined as a node without any incoming edges. Therefore, a root node with 

both incoming and outgoing edges cannot be defined as a root node for calculating the 

snowball factor. Furthermore, passive root nodes cannot be defined as root nodes for 

determining the snowball factor of a network. These nodes are defined as nodes with 

incoming edges for retrieving data from other nodes of the network. When this condition 

for the root node is met, the snowball factor is determined by calculating the sum of the 

product of both the height and width (per level) of the hierarchy, starting from a defined 

root node. In this calculation, each of the levels of the hierarchy should be weighted with 

the inverse of the shortest path length to the root node, as presented in Equation 2 

(Kreimeyer, 2009). In this equation, H is the highest level that is taken into account, i 

represents the current level for determining the snowball factor, and b stands for the 

width of level i of the network. 

𝑆𝑛𝑜𝑤𝑏𝑎𝑙𝑙 𝑓𝑎𝑐𝑡𝑜𝑟 = ∑
𝑏𝑖⋅𝐻

𝑖

𝐻
𝑖=1   (2) 

From this equation, it can be noted that the shortest path to the root node is equal to the 

difference between the total height of the hierarchy and the height of the specific level. 

4.4 Cognitive Weight  

To describe the human ability to understand both particular parts of the network and how 

a network is structured, a metric for describing the cognitive weight is defined by Wang 

(2006). This metric represents the sum of the cognitive weight of each individual node 

that is part of the network. 

The calculation of Metric 14 is performed in two different ways, since the metric can be 

defined slightly different. For the first manner, as shown in Equation 3, the highest 

cognitive weight for each of the nodes is assigned if multiple cognitive apply. 

CWj = max(ej ,3)    (3) 

In this equation, CWj is the cognitive weight of node j and ej is the number of outgoing 

edges in the assessed network structure. Afterwards, Metric 14 is determined by 

calculating the sum of all nodes in the network. In Table 2, an overview of the cognitive 

weight for different structures of the network is presented. 

Table 2: Overview of the cognitive weight for different structures within the network. 

Structure Weight  Structure Weight 

 

1 
 

3 

 

2 
 

3 

 

Evaluating the information as presented in Table 2 (Wang, 2006) may lead to a possible 

issue calculating the cognitive weight, as described above. Therefore, a second method is 

introduced for which the cognitive weights of the individual nodes are multiplied, if more 

than one structure applies, which is presented in Equation 4. 

CWk = max(ek , 3) ˑ lk ˑ 3   (4) 
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Here, CWk is the cognitive weight of node k, ek is the number of outgoing edges, and lk is 

the number of loops in the network, multiplied by 3 for assigning its cognitive weight. 

4.5 Case Study 

To apply the developed workflows, the 36 main components of the University Racing 

Eindhoven dataset, and their interdependencies are modelled. 

The results of the first analysis (activity and passivity, c.f. section 4.2) are depicted in the 

influence portfolio in Figure 3. In this figure, the number of incoming and outgoing edges 

per node are visualized. The elements in the first quadrant represent the most critical 

components in the network in red. The passive elements are displayed in yellow in the 

second quadrant. The blue, active elements in quadrant 4. Changes in the inert elements 

in the third quadrant, indicated with a green color, will have a minor effect on the 

network and its structure. Furthermore, the diameter represents the criticality of a 

component (c.f. Lindemann et al., 2009).  

 

Figure 3. Influence portfolio of the components from the dataset of University Racing Eindhoven 

and their interdependencies. 

As shown in Figure 3, in the case of <University Racing Eindhoven, the most critical 

components are the Monocoque and the low voltage (LV) wiring harness. All parts are 

connected via the body (Monocoque) of the racing car and multiple components are 

powered, controlled by or communicating over the LV wiring harness. Thus, the results 

of the influence portfolio are deemed plausible.  

The metric that describes the snowball factor (section 4.3) only exists for root nodes of a 

structure as shown in Figure 2. Thus, no metrics can be calculated for elements in the 

whole network of the case study, since the network does not contain root nodes and is 

highly interconnected. Nevertheless, the snowball factor can be calculated for isolated 

groups of edges and nodes.  

For determining the cognitive weight of the network of University Racing Eindhoven and 

indicating the difference between the two described methods for determining the metric, 
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as presented in Equations 3 and 4, the components of the dataset are divided into five 

domains. In Figure 4, the results of the calculation of the metric for both methods are 

presented. The left graph represents the cognitive weight when applying the “Highest 

value” method and the right graph shows the results for the “Multiplied” method. 

 

Figure 4. Cognitive weight for each of the domains, determined using the “Highest value” method 

on the left and using the “Multiplied” method on the right. 

Here, the difference between both methods can be identified. Where the value of the 

cognitive weight for the domains Electronics and Suspension is equal for the “Highest 

value” method, a difference can be seen for the “Multiplied” method. An explanation is 

that multiplying the cognitive weights for more complex structures results in higher 

values. In the same situation, the other method assigns the value of the most complex 

structure as cognitive weight. As a consequence, this method does not penalize all 

complex structures where the multiplying method takes every composition into account. 

5. Conclusion and Outlook 

This paper presents the implementation of a set of metrics using Soley Studio. The goals 

of the implementation are a) to improve the usability and cost-benefit of Structural 

Complexity management analyses in practice; and b) to create a metrics “library” that 

fosters comparability among and analyses of different datasets, therefore improving 

reproducibility.  

Using the in Soley Studio implemented tool, the user is able to obtain additional insight 

into extensive datasets by applying structural complexity management. The toolbox or 

library developed contains fourteen metrics that facilitate a range of insights regarding a 

technical system being developed and the socio-technical system that develops it. One 

application we address is enhancing the communication and collaboration between 

different departments, e.g. to indicate which barriers exist in certain collaboration 

networks and to identify recommendations for improvement measures to overcome the 

barriers. 

Moreover in this paper, we focus on three metrics (activity and passivity, snowball factor, 

and cognitive weight), which are explained in detail in Sections 4.2 to 4.4 and applied to 

a case study from the University Racing Eindhoven (Section 4.5). Based on the metrics 

applied to this dataset, the following two insights about the system can be drawn:  
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- The Monocoque is clearly the most critical part of the architecture. Thus, the person 

responsible for its development has to be integrated thoroughly in the overall 

information flow of the project. 

- Due to the high cognitive weight of the networks concerning the domains electronics 

and suspension, these two areas are prone for the analysis with structural metrics, as 

a conclusion cannot be drawn just from visual analyses. 

The main challenge in this work was the fact that many metrics are not defined very 

clearly in literature leading to different implementation possibilities. This contribution 

overcomes this obstacle by sharpening the definitions during their implementation. The 

industrial benefit of the presented metrics library lies in the possibility of quickly 

analyzing complex collaboration structures in a standardized way.  

In future work, additional metric calculations can be implemented to obtain further 

insights when applying structural complexity management. To identify additional metrics 

that need to be implemented, additional datasets with different structures can be analyzed. 

In addition, the toolbox is currently applied to student teams in research projects to test 

their usability and will be used in industrial case studies in the near future. This will 

provide insights on the usefulness of the conclusions to be drawn from them as well as 

their industrial benefit. 
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